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Abstract. Human pose estimation is widely used in virtual reality, medical diagnosis,
video surveillance, etc. However, the high computational cost restricts its application
in some terminals, so the research of lightweight models is particularly important. To
address the problem of inadequate learning of Lite-HRNet weight coefficients, this pa-
per proposes Lite CSW-HRNet, which independently computes weight maps in parallel
along channels and in space during single-resolution and cross-resolution weight com-
putation, respectively, and fully preserves the original features using max pooling and
average pooling in the computation process; Adaptive 1D convolution is introduced in the
channel weight calculation to aggregate information between adjacent channels, avoid-
ing the adverse effects of channel degradation. In the spatial weight calculation, a 7Ö7
convolution is used to increase the perceptual field to aggregate a wider range of spatial
contextual information. Comparative experiments on the COCO2017 dataset show that
compared with Lite-HRNet, Lite CSW-HRNet further improves accuracy with decreasing
both Params and FLOPs, and outperforms the state-of-the-art MobileNet and ShuffleNet
in all metrics; compared with the large model HRNet, Params and FLOPs are about 1/30
of it, and AP can reach 90% of it, achieving a better balance result between accuracy and
complexity of human pose estimation.
Keywords: deep learning, human pose estimation, channel space weighting, high-
resolution network, lightweight network

1. Introduction. The goal of human pose estimation (HPE) is to determine from an
input image the coordinates of important human skeletal points. The domains of action
recognition [1], human-computer interaction [2], and medical rehabilitation have all bene-
fited greatly from the rapid development and widespread usage of human pose estimation
technologies in recent years. One of the most difficult and active areas of research in
computer vision is this one. The task of attitude estimation cannot be limited to the
improvement of recognition accuracy only, nowadays, there are more and more various
terminals in life, and due to the limitation of size and cost, it is difficult to deploy the com-
plex network, and how the network can become lighter and still guarantee the recognition
accuracy has become a big trend in this research field. Yu et al. [3] proposed Lite-HRNet
by introducing conditional channel weighting units into HRNet. the introduction of con-
ditional channel weighting units and the network architecture that always maintains high
resolution achieves the best results so far for the position-sensitive human pose estimation
task. The model is lighter and more accurate than the mainstream networks. Although
Lite-HRNet has achieved a good balance result between accuracy and complexity, there
is still the problem of inadequate learning of weight coefficients, which is analyzed to be
caused by the following reasons:

(1) The importance of key points of human skeleton in spatial location is not considered.
(2) A significant portion of features are lost as a result of average pooling, which severely

restricts feature diversity.
(3) After pool, the fully connected layer downscales and upscales the channels, which

has a negative impact on learning the dependencies between channels.
We rethink the weight learning process in order to address the issue of insufficient

learning of weight coefficients in the Lite-HRNet network, and we propose the lightweight,
high-resolution Lite-CSW-HRNet network, which is based on channel spatial weighting.
The weight map is independently and concurrently calculated along the channel and space
in the processes of single-resolution weight calculation and cross-resolution weight calcu-
lation, and it is then multiplied by the input feature map for adaptive feature refinement.
In the channel weight map calculation process, we use max pooling and average pooling
to complement each other in parallel to fully express the original rich information of the
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feature and introduce adaptive 1D convolution. The same parallel max pooling and aver-
age pooling are used for the computation of the spatial weight map. In addition, a 7Ö7
convolution is used to broaden the sensory field and aggregate more spatial contextual
data in order to capture the correlation of the spatial locations of key points in the human
skeleton.

2. RelatedWork. Numerous recent human pose estimation techniques, including ResNet
(Residual Network) [4], Hourglass [5], HRNet (High-Resolution Net) [6], and GAN (Gen-
erating Adversarial Network) [7], are based on neural networks. To address the issue
of network deterioration brought on by increased depth, ResNet incorporates residual
modules and makes use of a jump-connected residual structure. Hourglass network can
more effectively extract the target’s multi-scale feature information by cascading numer-
ous Hourglass modules. By connecting high-resolution and low-resolution sub-networks
in simultaneously, HRNet repeats multi-scale fusion while retaining a high-resolution rep-
resentation. Generating adversarial networks incorporates a priori information about the
human skeleton to improve the correctness of skeletal keypoint prediction through adver-
sarial training, which in turn improves the accuracy of estimating the location of various
body parts. While all of these approaches enable detection with high accuracy, they
are often implemented through complex network structures, which in turn generated nu-
merous model parameters and a significant amount of computing work, requiring high
costs both for training and mobile terminal deployment, and therefore, some research has
shifted the focus to lightweighting. Xiao et al. [8] proposed the Simple Baselines using a
combination of a backbone and Deconvolution Module of ResNet50, demonstrating that
a simple network structure can also achieve desirable results. Zhang et al. [9] improved
Simple Baselines to propose LPN (Lightweight Pose Network) with Depthwise separable
convolution [10] and attention mechanism to design lightweight bottleneck block, and also
proposed an iterative training strategy and B-soft-Argmax function, this network shows
a large advantage in inference speed. Debnath et al. [11], inspired by hourglass networks,
improved the detection accuracy by introducing a novel shunt architecture in the last two
layers of MobileNetsV1 [12], which reduces the parameters of the model and mitigates
overfitting. MobileNetV2 [13] introduces linear bottlenecks and inverse residuals on top
of V1 to improve the network’s characterization capability and further enhance perfor-
mance. Ding et al. [14] updated the search space and search strategy of NAS (Neural
Architecture Search) by using a multi-branch architecture to provide convolutional en-
coding of multiple feature resolutions and proposed HR-NAS, which achieved a better
accuracy and complexity balance on three dense prediction tasks and classification tasks.
Zhang et al. [15] designed differentiable neural network architecture search and spatial
information correction modules and proposed the EfficientPose network to automate the
design of backbone networks at a very low computational cost and to effectively address
the checkerboard effect in prediction, which in turn improves the prediction accuracy. Yu
et al. [3] proposed Naive Lite HRNet by replacing the second 3 Ö 3 convolution and all
normal residual blocks in Small HRNet (HRNet-W16) using Shuffle blocks in ShuffleNetV2
[16]. To further optimize the network performance, conditional channel weighting unit is
also introduced and Lite-HRNet is proposed.

3. Method.

3.1. Lite CSW-HRNet. The network structure of Lite-CSW-HRNet (Figure 1, Table
1) still follows Lite-HRNet and has a different parallel structure. Firstly, the stage1 takes
1/4 of the input image resolution as the input of the network, and then the stage is formed
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by adding 1/2 of the lowest resolution of the previous stage as a new branch in parallel
to the current stage, and fusing the resolutions with each other.

Figure 1. The structure of Lite CSW-HRNet.

Table 1. Composition of Lite CSW-HRNet. CSW is channel spatial weight.

layer output number of layers operator resolution branch output channels repeat
input 256Ö256 1Ö 3
stage1 64Ö64 1 conv2d, shuffle block 2Ö, 4Ö 32 1
stage2 64Ö64 2 CSW block, fusing block 4Ö8Ö 40, 80 2
stage3 64Ö64 4 CSW block, fusing block 4Ö8Ö16Ö 40, 80, 160 2
stage4 64Ö64 2 CSW block, fusing block 4Ö8Ö16Ö32Ö 40, 80, 160, 320 1

In Lite CSW-HRNet, we call the original conditional channel weighting as channel spa-
tial weighting. As shown in Figure 2, S(•) is the single-resolution weighting function, C(•)
is the cross-resolution weighting function, and the dashed line indicates the information
interaction between the cross-resolution. The weighting process for the s-th resolution
branch is expressed as,

Ys = Ws ⊗Xs (1)

where ⊗ represents the primary element multiplication and Ws is a three-dimensional
tensor of size Cs ×Ws ×Hs.

In order to communicate information simultaneously, we compute the weights using
both the single-resolution channel space and the all-resolution channel space.

3.2. Single-resolution weight computation. Given a feature map F ∈ RC×H×W as
input, a 1D channel weight mapMc ∈ RC×1×1 and a 2D spatial weight mapMs ∈ R1×H×W

are computed according to (2), respectively.

F ′
c =Mc (F )
F ′
s =Ms (F )

(2)

As shown in Figure 3, we connect these two weight computation modules in parallel to
obtain the weight map separately, and then perform adaptive feature refinement on the
feature map, and F ′′ is the final refinement output.
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Figure 2. Channel Spatial Weighting block.

F ′′ = F ′
c ⊗ F ′

s ⊗ F (3)

As a result, channel weight values are broadcast along the spatial dimension during
multiplication and vice versa.

Figure 3. The process of Single-resolution weight computation.

The human skeletal keypoints are smaller than the global image targets, and com-
pared with the channel weight computation and spatial weight computation in series, the
parallel approach can extract the shallow features of the human skeletal keypoints more
adequately, so that the input feature maps can be learned separately and the latter weight
computation module will not be interfered by the previous weight computation module.
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Channel weight computation. In the specific details of the channel weight compu-
tation implementation, firstly, average pooling and max pooling are applied to the input
feature map F ∈ RC×H×W . Through experiments, we discovered that a single average
pooling or max pooling significantly reduces the diversity of features for feature maps in
various contexts, leading to a significant loss of features. Take the single-channel grayscale
Figure 4 as an example, when the foreground image is darker than the background im-
age, max pooling leads to a large amount of weakened features in the foreground image,
and conversely when the foreground image is brighter than the background image, aver-
age pooling leads to a large amount of weakened features in the foreground image. As
a result, we considerably enhance the network’s ability to represent features in various
contexts by using both average and maximum pooling. We also employ this approach in
the computation of the spatial weights below.

Figure 4. The distinction between maximum and average feature extraction
pooling.

After pooling the feature maps, we borrowed the idea from ECA [17, 18, 19] that
any given intermediate feature maps in CNNs have greater correlation between adjacent
channels, and that mapping channel features using fully connected layers generates many
redundant computations. Instead of using a fully connected layer, we include a 1D con-
volutional layer as part of our local cross-channel interaction method, while applying an
adaptive channel dimension function to determine the size of the 1D convolutional kernel
for more efficient training of the network, which improves accuracy while reducing the
number of parameters. Only the interactions between each channel and its k surrounding
channels are taken into account in order to capture the local cross-channel interactions,
and the weights ωi imposed on the channels are generated by (4), using the average pooling
branch as an example,

ωi = σ

(
k∑

j=1

wj
i y

j
i

)
, yji ∈ Ωk

i (4)

where Ωk
i denotes the k neighboring channels of y′j, y

′
j denotes the value of the feature map

after pooling, and wij denotes the connection weights of the k neighboring channels to the
next layer. At this point, there are a total of k×C parameters within the average pooling
branch, and C stands for the input feature map’s channel count. To further reduce the
complexity of the network and improve efficiency, the parameters are shared among all
connected channels, as shown in (5):

ωj = σ

(
k∑

j=1

w′
jy

′
j

)
, y′j ∈ Ωk

i (5)
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Compared with (4), w′
j becomes wj. After the channel connection parameters are

shared, fast 1D convolution with a kernel size of k can easily reach (5), when the number
of parameters is only k.

w = σ (C1Dk (y)) (6)

In (6), C1D stands for 1D convolution, and k for the quantity of convolution kernels. In
the meantime, the channel dimension C and k are associated. Between k and C, there
might be a specific mapping relationship φ. k is nonlinearly proportional to C. As a
result, using the exponential function to represent the mapping relationship between k
and C is a viable option,

C = φ (k) ≈ exp (y · k − b) (7)

since the channel dimension C is often set to an integer power of 2, Equation (7) is changed
to Equation (9) where y and b are two hyperparameters that are typically set to 1 and 2.

k = ψ (C) =

⌊
log2 (C)

y
+
b

y

⌋
odd

(8)

where ⌊t⌋odd denotes the odd number closest to t. As a result, for a given channel dimen-
sion C, the convolution kernel size k can be computed adaptively in the manner described
above.

In conclusion, we create a channel weight map by utilizing the inter-channel relation-
ships of the features. First, we aggregate the spatial information of the feature mapping
using average pooling and max pooling operations, creating two distinct channel descrip-
tors, F c

avg and F c
max, which stand for average pooling features and max pooling features,

respectively. The information from the nearby k channels is then combined using a 1D
convolution with a convolution kernel of length k. After convolution, the two features
are added by elements and the Sigmoid function is used to produce a channel weight
map Mc (F ) ∈ RC×1×1. In order to acquire the feature map after injecting the channel
weights, the created channel weights are then multiplied by the input feature map by cor-
responding elements and then enlarged to RC×H×W along two dimensions on the space.
The channel weight calculating procedure can be specifically stated as follows:

Mc (F ) = σ
(
fk
1D (AvgPool (F )) + fk

1D (MaxPool (F ))
)

(9)

The one-dimensional convolution procedure with the convolution kernel size k is rep-
resented by fk

1D, and σ stands in for the Sigmoid function. Equation (8) in [3] adaptively
calculates size of k.

Figure 5. Channel weight computation module.

Spatial weight computation. As an addition to the channel weight calculation, the
spatial weight computation first runs average pooling and max pooling operations along
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the input feature map’s channel axis to produce the two separate spatial context descrip-
tors F s

avg and F s
max. To create a functional spatial feature descriptor, the independently

generated descriptors are stitched along the channel axis. In aggregating spatial informa-
tion, we found that the association between key points of the human skeleton requires a
larger perceptual field compared to other visual tasks.

Figure 6. Association between key points.

For a small feature extractor whose receptive field can only cover the elbow joint itself,
it is challenging to distinguish the elbow joint from the knee joint in the left panel of
Figure 6 due to their comparable appearances. However, if the receptive field can also see
the nearby wrist or shoulder, it is much easier to categorize it as an elbow. Similarly, in
the figure on the right, to determine whether a part of the body is left or right, the orien-
tation of the person’s head and hands is important information, but this requires a larger
receptive field. We choose to use 7× 7 convolution to encode the mapping of information
in the space that needs to be emphasized or suppressed region to aggregate the spatial
context information more efficiently, and the convolved features are subjected to Sigmoid
function operation to generate the spatial weight map Ms(F ) ∈ R1×H×W . The created
spatial weights are then broadcast extended to RC×H×W along the channel dimension and
multiplied by the corresponding elements of the input feature map to produce the feature
map after injecting the weights. Specifically, the spatial weight computation process can
be expressed as follows:

Ms(F ) = σ
(
f 7×7 ([AvgPool(F );MaxPool(F )])

)
= σ

(
f 7×7

(
[Fs

avg; F
s
max]

))
(10)

where f 7×7 denotes a 7× 7 regular convolution.
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Figure 7. Spatial weight computation module.

In summary, Single-resolution weight was calculated using Equation (11):

ws = S(Xs) (11)

where Xs represent the single-resolution maps’ input maps. The function S(·) is im-
plemented as:

Xs →Mc → ⊗ → WsXs →Ms → ⊗ → Ws (12)

The single-resolution weight computation process is shown in Figure 8.

Figure 8. Single-resolution weight computation process.

3.3. Cross-resolution weight computation. Take into account that at the s-th stage,
there are s parallel resolutions and s weight mappings W1,W2, · · · ,Ws, each of which
corresponds to a certain resolution. Compute s weight mappings for all channels and
spaces in different resolution subnets using the function C(·),

(W1,W2, · · · ,Ws) = C(X1, X2, · · · , Xs) (13)
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where {X1, X2, · · · , Xs} are the input maps for the s resolution, X1 is the highest res-
olution, and Xs is the s-th high resolution. The implementation of function C(·) is as
follows: We use adaptive average pooling (AAP) to process {X1, X2, · · · , Xs−1}:

X ′
1 = AAP (X1)

X ′
2 = AAP (X2)

...
X ′

s−1 = AAP (Xs−1)

(14)

where AAP combines any input size into a given output size Ws×Hs, at this time each
parallel resolution is the same size as the minimum resolution, we will {X ′

1, X
′
2, · · · , X ′

s−1}
and Xs stitch together, the subsequent computations are implemented on is small reso-
lution, so its computational complexity is very small. For the subsequent operation, we
directly use the single-resolution weighting method,

{X ′
1, X

′
2, · · · , X ′

s−1, Xs}
↗
↘

Mc

Ms

↘
↗ ⊗ → {W ′

1,W
′
2, · · · ,W ′

s} (15)

to generate a weight map {W ′
1,W

′
2, · · · ,W ′

s} containing s branches, with weights at
each location for each resolution depending on the channel and spatial features at the
same location from the pooled multi-resolution feature map.

4. Experiments and Analysis. We evaluated the Lite-CSW-HRNet on the human
pose estimation dataset COCO2017 [20] and conducted comparison experiments with the
original Lite-HRNet.

4.1. Datasets. The experiments were conducted using the COCO2017 dataset for train-
ing, validation and testing, which is a more widely used benchmark dataset. the COCO2017
dataset is divided into the training dataset train2017 (57000 images and 15000 person in-
stances), the validation dataset val2017 (5000 images) and the testing dataset test-dev2017
(20,000 images). There are 17 skeletal key points for each human body in the dataset,
which are nose, right eye, left eye, right ear, left ear, right shoulder, right elbow, right
wrist, left shoulder, left elbow, left wrist, right hip, right knee, right ankle, left hip, left
knee and left ankle.

The sizes of the original images in the COCO2017 dataset are not uniform, so the
images need to be pre-processed before training. In this experiment, two sizes of images
are trained and compared for analysis, the image sizes are 256Ö192 and 384Ö288, and
the whole preprocessing process is shown as follows:

Step1. The images of the dataset were cropped by centering on the hip of the main
human body, re-cropping the image size to 256Ö192 or 384Ö288, and adjusting the human
detection frame to a fixed aspect ratio of 4:3, so that the network could be trained.

Step2. A number of data augmentation procedures, including random rotation ([-
30°,30°]), random scaling ([0.75,1.25]), random flip, and additional half body data aug-
mentation, are carried out on the training images for certain partial human images in the
COCO2017 dataset.

4.2. Environment Configuration. The experiments were done on a server consisting of
Ubuntu version 18.04 with Linux kernel, python 3.7, pytorch 1.8.1+cu101 and an NVIDIA
Tesla T4 GPU. During the experiments, the Adam optimizer was chosen to optimize the
model with a learning rate of 0.002 and a total training epoch of 210.
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4.3. Training and Testing. The train2017 dataset was used to train the Lite CSW-
HRNet, while the val2017 dataset and test-dev2017 dataset were used to validate and
test it. Using a two-stage top-down methodology, we first detected humans using Simple-
Baseline [8] person detector before moving on to keypoint identification.

4.4. Evaluation. We use AP (Average Precision), AR (Average Recall), Params, and
FLOPs as the evaluation metrics of the network. Where AP and AR are based on OKS
(Object Key Point Similarity), OKS is expressed as:

OKS =

∑
i exp (−d2i /2s2k2i ) δ(vi > 0)∑

i δ(vi > 0)
(16)

where di is the distance in Euclid between the predicted keypoints and the actual value,
s is the target scale factor, ki is the decay constant connected to each keypoint, ski is
the standard deviation of each keypoint, and vi ∈ {0, 1, 2} is the true keypoint visibility
identifier, where 0 denotes unlabeled, 1 denotes labeled but not visible, and 2 denotes
labeled and visible. The range [0, 1] encompasses the precision of keypoint detection,
with a bigger OKS indicating a more precise spatial positioning of keypoints.
AP denotes the average accuracy at TOKS of 0.50, 0.55, 0.60,..., 0.90, 0.95 respectively.
The detection accuracy for TOKS = 0.50 is indicated by AP50, and at TOKS = 0.75

by AP75. APM stands for medium-scale target detection accuracy, APL for large-scale
target detection accuracy, and AR for average recall at TOKS of 0.50, 0.55, 0.60,..., 0.90,
0.95.

The entire number of parameters that must be taught for the network model is called
params. One billion floating point operations per second are known as GFLOPs.

4.5. Results. To demonstrate the effectiveness of Lite-CSW-HRNet, we develop com-
parison experiments. Params and FLOPs do not include human detection and key point
grouping.

The comparison between Lite-CSW-HRNet and several models using the COCO val2017
dataset is shown in Table 2. When the image input size of Lite CSW-HRNet is 256Ö192,
it obtains 64.2% AP score, which is 0.8% better than Lite-HRNet, 0.5% better on AP50,
and 0.7% better on APM . Compared with the other three small models MobileNetV2,
ShuffleNetV2, and Small HRNet, the evaluation metrics are similarly better than them.
Although the accuracy of Lite CSW-HRNet is reduced compared with the large models
SimpleBaseline and HRNetV1, the number of Params is about 1/30 of theirs and the
FLOPs is about 1/40 of theirs, which is better to achieve the balance of the model
indicators. When the input image size is 384Ö288, Lite CSW-HRNet improves 1% over
Lite-HRNet in AP score to 67.2%, 0.2% in AP50, and 1.2% in APL at the same time.
It further shows that Lite CSW-HRNet can effectively improve the detection of small
and medium scale targets without sacrificing the accuracy of large scale targets. Table
3 displays the comparison outcomes of the Lite CSW-HRNet with several models on the
COCO test-dev2017. The comparison shows that when the input image size is 256Ö192,
Lite CSW-HRNet obtains 63.7% AP score, which is 0.8% better than Lite-HRNet, while
AP50 and AP75 are also improved. When the input image size is 384Ö288, each evaluation
metric is equally better than the four smaller models. The effectiveness of Lite CSW-
HRNet is further demonstrated by comparison experiments with two datasets and two
different input sizes.
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Table 2. Comparisons using the COCO val 2017 set.

Model Backbone Pretrain Input size #Params GFLOPs AP AP50 AP75 APM APL AR
Large networks

SimpleBaseline[8] RestNet-50 Y 256Ö192 34.0M 8.90 70.4 88.6 78.3 67.1 77.2 76.3
HRNet[6] HRNetV1-W32 N 256Ö192 28.5M 7.10 73.4 89.5 80.7 70.2 80.1 78.9

Small networks
MobileNetV2 MobileNetV2 Y 256Ö192 9.6M 1.48 63.3 86.4 70.9 60.0 69.6 69.5
ShuffleNetV2[3] ShuffleNetV2 Y 256Ö192 7.6M 1.28 59.9 85.4 66.5 56.2 66.2 66.4
Small HRNet[3] HRNet-W16 N 256Ö192 1.3M 0.34 55.2 80.4 61.0 53.3 61.0 62.1
Lite-HRNet Lite-HRNet-18 N 256Ö192 1.1M 0.28 64.1 86.1 71.3 60.9 71.4 69.9
Lite-HRNet Lite-HRNet-18 N 384Ö288 1.1M 0.46 66.2 87.3 74.1 62.4 72.1 72.3

Lite CSW-HRNet Lite-HRNet-18 N 256Ö192 0.9M 0.20 64.2 86.6 71.8 61.4 70.1 70.5
Lite CSW-HRNet Lite-HRNet-18 N 384Ö288 0.9M 0.45 67.2 87.3 74.3 64.1 73.3 73.1

Table 3. Comparisons using the COCO test-dev2017 set.

Model Backbone Pretrain Input size #Params GFLOPs AP AP50 AP75 APM APL AR
Large networks

SimpleBaseline[8] RestNet-152 Y 384Ö288 68.6M 35.60 73.7 91.9 81.8 70.3 80.9 79.0
HRNet[6] HRNetV1-W32 N 384Ö288 28.5M 16.00 74.9 92.5 82.8 71.3 80.9 80.1

Small networks
MobileNetV2 MobileNetV2 Y 384Ö288 9.6M 3.38 66.1 89.2 73.3 62.4 71.2 71.4
ShuffleNetV2[3] ShuffleNetV2 Y 384Ö288 7.6M 2.87 62.9 86.4 69.4 58.9 69.3 68.9
Small HRNet[3] HRNet-W16 N 384Ö288 1.3M 1.21 55.3 82.0 61.5 52.1 61.5 61.2
Lite-HRNet Lite-HRNet-18 N 256Ö192 1.1M 0.28 64.1 86.4 71.3 60.9 71.4 69.9
Lite-HRNet Lite-HRNet-18 N 384Ö288 1.1M 0.46 66.2 89.4 74.2 63.7 72.4 71.3

Lite CSW-HRNet Lite-HRNet-18 N 256Ö192 0.9M 0.20 63.7 86.7 71.1 61.3 68.5 69.7
Lite CSW-HRNet Lite-HRNet-18 N 384Ö288 0.9M 0.45 66.6 89.5 74.2 63.7 71.8 72.4

Figure 9. Comparison plots of Lite CSW-HRNet with small model FLOPs and
AP. (a) Results of comparison in the COCO val2017 dataset with 256Ö192 input
size. (b) Results of comparison on the COCO test-dev2017 dataset with a 384 x
288 input size.

Figure 10 shows the results of the single person pose estimation and heat map com-
parison between Lite CSW-HRNet and the other three small models without the human
detector. Among them, (a) MobileNetV2 and (b) ShuffleNetV2 misidentified the left hand
of the person; (c) Lite-HRNet could roughly identify each key point but with a large er-
ror; from the heat map, we can see that (d) Lite CSW-HRNet can accurately locate and
identify each key point.

The non-normal human pose can also measure the merit of the model. In Figure 11,
(a) MobileNetV2, (b) ShuffleNetV2 and (c) Lite-HRNet fail to identify the legs of the
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Figure 10. Comparison results of single person pose estimation and heat map
without human detector. (a) MobileNetV2. (b) ShuffleNetV2. (c) Lite-HRNet.
(d) Lite CSW-HRNet.

Figure 11. Comparison results of human pose estimation and heat map un-
der human pose distortion using Faster-RCNN as a human detector. (a) Mo-
bileNetV2. (b) ShuffleNetV2. (c) Lite-HRNet. (d) Lite CSW-HRNet.

two backwards hooked soccer players. (a) MobileNetV2 and (b) ShuffleNetV2 incorrectly
identify the legs as arms, compared to (d) Lite CSW-HRNet which identifies the characters
completely and correctly.

Figure 12 shows the results of Lite CSW-HRNet using Faster RCNN as a human de-
tector for multi-person pose estimation and heat map comparison with three other small
models in the occlusion case. Among them, (a) MobileNetV2, (b) ShuffleNetV2 and (c)
Lite-HRNet have poor recognition of the key points of the crouching person in the fig-
ure, and have different degrees of detection errors for the right leg of the standing person.
From the heat map and the pose estimation results, we can see that (d) Lite CSW-HRNet
can recognize each key point of the squatting person more accurately, and the right leg
of the standing person is also recognized more accurately.
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Figure 12. Comparison results of multi-person pose estimation and heat map in
the occlusion case using Faster-RCNN as human detector. (a) MobileNetV2. (b)
ShuffleNetV2. (c) Lite-HRNet. (d) Lite CSW-HRNet.

Figure 13. Lite CSW-HRNet contains more pose estimation results for viewpoint
changes, occlusions, and multiple people.

5. Conclusion. In this paper, we optimize the weight coefficient learning method of
Lite-HRNet and propose Lite CSW-HRNet, which independently computes weight maps
in parallel along channels and spaces during single-resolution weight calculation and cross-
resolution weight calculation, respectively, and performs adaptive feature refinement on
the input feature maps. A better balance between accuracy and complexity of human pose
estimation is achieved by Lite CSW-HRNet, as evidenced by the comparison experimental
results, which show that all evaluation indexes of Lite CSW-HRNet outperform the current
advanced lightweight human pose estimation network. At present, the posture estimation
only recognition accuracy improvement can not meet the needs of society, life in a variety
of terminal products more and more, due to the volume and cost constraints, the complex
network is difficult to deploy, the network how to become more lightweight but can ensure
the recognition accuracy has become the general trend in this research field. Under the
premise of guaranteeing the light weight of the model, the next step is to explore how to
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promote the channel weights in the frequency domain [22] can be better applied to the
task of human posture estimation.
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